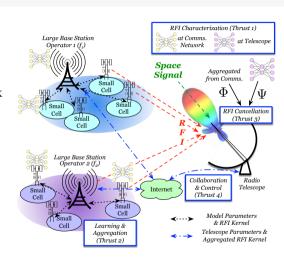
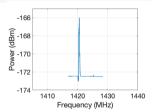
Collaborative Interference Cancellation for Radio Astronomy NSF SWIFT - 2021

Aveek Dutta¹, Dola Saha¹ and Gregory Hellbourg²

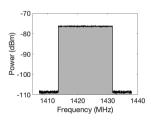
¹Department of Electrical & Computer Engineering, University at Albany, SUNY ²Department of Astronomy, California Institute of Technology

NSF PI Meeting, September 11, 2025




Project Objectives

- <u>Characterize RFI</u> generated by communication networks.
- <u>Distributed/federated learning</u> of RFI and aggregate local characterizations.
- <u>Bidirectional collaboration</u> between cellular network and Radio Telescope.
- <u>Cancel incident RFI</u> at the telescope using the aggregated interference metric.
- <u>Validate</u> with experiments at OVRO with DSA-110.



Temporal and Spectral Characteristics

(a) H1 line @ 1420 MHz

(b) LTE signal at BS

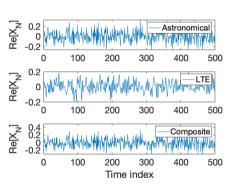
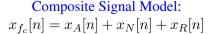



Figure: Signals in time domain

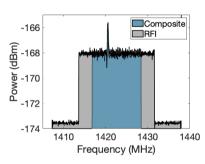
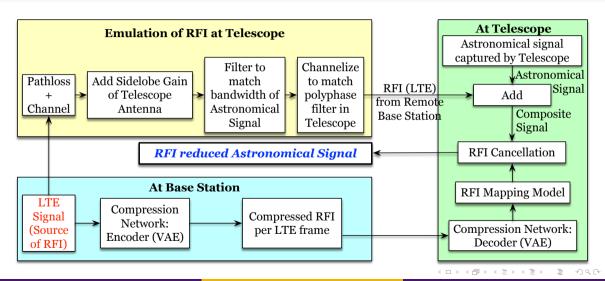



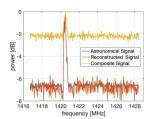
Figure: Composite Signal Spectrum

Astronomical Signal is captured by DSA-110, LTE signal is simulated.

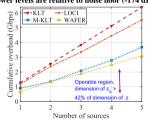
System Simulation for RFI Mitigation

Technical Approaches

RFI Cancellation from Single Source (BS)


- DSP based Decomposition: Karhunen–Loève Transform (KLT) [1,2]
- Neural Network based Approach [3]
 - Reduced Computational Complexity and Communication Overhead

RFI Cancellation from Multiple Sources (BSs)


- DSP based Decomposition: Karhunen–Loève Transform (KLT) [4]
 - Reduced Communication Overhead
- Neural Network based Approach [5, 7]
 - Reduced Computational Complexity & Communication Overhead

Bidirectional Collaboration Framework

- Dynamic protection zone for RFI from LEO satellites [7]
- Jointly maximize throughput in ORAN while minimizing RFI [8].

Power levels are relative to noise floor (-174 dBm)

Communication Overhead

Broader Impact

Community Engagement

- Active collaboration over 4 years between radio astronomy (Caltech) and wireless communication researchers (UAlbany) *Two concurrent SWIFT projects*.
- Looking to engage with members of the ORAN community and other radio telescope sites to test the cancellation techniques on *real RFI datasets*.

Knowledge Dissemination

- Publications: 5 Conference + 3 Journal publications + 1 Patent disclosure.
- In person presentation in DySPAN '21, '24, '25 as well as in ICC '23 and NSF PI meetings.

Student Advising and Training

- 4 PhD students funded at different stages of their PhD.
- Placement: Amazon Lab 126, Qualcomm, Internships at AT&T Research.

Publications

- Maqsood Careem, Shuvam Chakaraborty, Aveek Dutta, Dola Saha, Gregory Hellbourg, Spectrum Sharing via Collaborative RFI Cancellation for Radio Astronomy, in IEEE DySPAN 2021 [BEST PAPER].
- 2. Shuvam Chakraborty, Gregory Hellbourg, Maqsood Careem, Dola Saha and Aveek Dutta, *Collaboration with Cellular Networks for RFI Cancellation at Radio Telescope*, in **IEEE Transactions on Cognitive Communications and Networking**, 2023.
- 3. Shuvam Chakraborty, Dola Saha, Aveek Dutta and Gregory Hellbourg, *LOCI: Learning Low Overhead Collaborative Interference Cancellation for Radio Astronomy*, accepted in **IEEE ICC** 2023.
- 4. Shubham Chakraborty, Dola Saha, Aveek Dutta and Gregory Hellbourg, *Low Overhead Multi-Source RFI Cancellation*, in **IEEE DySPAN** 2024.
- 5. Sirajum Munira, Shubham Chakraborty, Dola Saha, Aveek Dutta and Gregory Hellbourg, WAFER: WAveform-based Feature Extraction for RFI Cancellation from Multiple Sources, IEEE DySPAN 2025.
- Sirajum Munira, Shubham Chakraborty, Dola Saha, Aveek Dutta and Gregory Hellbourg, WAFER: WAveform-based Feature
 Extraction for RFI Cancellation from Multiple Sources, (extended version) under review in IEEE Open Journal of Antennas
 and Propagation (OJAP).
- Sirajum Munira, Dola Saha, Aveek Dutta and Gregory Hellbourg, Dynamic Protection Zone for Radio Astronomy, IEEE DySPAN 2025.
- 8. Tayyebeh Gashteroodkhani, Aveek Dutta, Dola Saha and Gregory Hellbourg, CORPUS: Collaborative ORAN for Passive Users of the Spectrum, under review.

PI Meeting, 2025

Thank You! Questions?

adutta@albany.edu